Skip to main content
Đáp án đề thi THPT Quốc Gia 2021

Sử dụng phương pháp đổi biến số để tính tích phân

Sử dụng phương pháp đổi biến số để tính tích phân

1. Kiến thức cần nhớ

- Vi phân:

\(\begin{array}{l}t = u\left( x \right) \Rightarrow dt = u'\left( x \right)dx\\u\left( t \right) = v\left( x \right) \Rightarrow u'\left( t \right)dt = v'\left( x \right)dx\end{array}\)

- Công thức đổi biến: \(\int\limits_a^b {f\left[ {u\left( x \right)} \right]u'\left( x \right)dx}  = \int\limits_{t\left( a \right)}^{t\left( b \right)} {f\left( t \right)dt} \)

2. Một số dạng toán thường gặp

Dạng 1: Tính tích phân bằng phương pháp đổi biến \(t = u\left( x \right)\).

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Ví dụ: Tính tích phân \(\int\limits_0^{\sqrt 3 } {2x\sqrt {{x^2} + 1} dx} \).

Giải:

Đặt \(t = \sqrt {{x^2} + 1}  \Rightarrow {t^2} = {x^2} + 1 \) \( \Rightarrow 2tdt = 2xdx\).

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 1\\x = \sqrt 3  \Rightarrow t = 2\end{array} \right.\)

Do đó: \(\int\limits_0^{\sqrt 3 } {2x\sqrt {{x^2} + 1} dx}  = \int\limits_1^2 {t.2tdt}  = \left. {\dfrac{2}{3}{t^3}} \right|_1^2 = \dfrac{2}{3}\left( {{2^3} - {1^3}} \right) = \dfrac{{14}}{3}\).

Dạng 2: Tính tích phân bằng phương pháp đổi biến \(x = u\left( t \right)\).

- Bước 1: Đặt \(x = u\left( t \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = a'\\x = b \Rightarrow t = b'\end{array} \right.\).

- Bước 2: Lấy vi phân 2 vế \(dx = u'\left( t \right)dt\).

- Bước 3: Biến đổi \(f\left( x \right)dx = f\left( {u\left( t \right)} \right).u'\left( t \right)dt = g\left( t \right)dt\).

- Bước 4: Tính nguyên hàm theo công thức \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \)

Ví dụ: Cho $I = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt {1 - {x^2}} {\rm{d}}x} $, nếu đặt $x = \sin t$ thì:

A. $I = 2\int\limits_0^1 {\left( {1 + \cos 2t} \right){\rm{d}}t} $

B. $I = \int\limits_0^1 {\dfrac{{1 - \cos 2t}}{2}{\rm{d}}t} $

C. $I = \int\limits_0^1 {\dfrac{{1 + \cos 2t}}{2}{\rm{d}}t} $

D. $I = \int\limits_0^1 {\dfrac{{\cos 2t - 1}}{2}{\rm{d}}t} $

Giải:

Đặt $x = \sin t \Leftrightarrow dx = \cos t\,dt$ và $1 - {x^2} = 1 - {\sin ^2}t = {\cos ^2}t$

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\)

Suy ra

$I = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt {1 - {x^2}} {\rm{d}}x}  = \int\limits_0^1 {\sqrt {{{\cos }^2}t} \cos t{\rm{d}}t}  $ $= \int\limits_0^1 {{{\cos }^2}t{\rm{d}}t}  = \int\limits_0^1 {\dfrac{{1 + \cos 2t}}{2}{\rm{d}}t} $

Chọn C.

Chú ý:

Các dấu hiệu thường dùng phương pháp trên là:

Luyện bài tập vận dụng tại đây!

Tổng ôn tập MÔN TOÁN Lớp 12